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analysis of these systems is a two-phase procedure: (1) the determination of the static
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of structural response relative to the equilibrium configuration due to static and dy-
namic in-service loads. This report addresses static solution algorithms for reliable
phase-one solution procedures. In contrast to the standarad Newton-Rapbson (NR)
incremental/iterative algorithm, the automated dynamic relaxation (ADR) solution al-
gorithm is a pure iterative algorithm and it is also simple to implement. The ADR
algorithm's performance is globally convergent in test problems having multiple solu-
tions, whereas NR algorithms are known to be only locally convergent. The ADR
algorithm can be successfully utilized to form the basis of structural analysis software
for specialized, highly nonlinear problems involving tensioned structures.

NAVAL CIVIL ENGINEERING LABORATORY PORT HUENEME CALIFORNIA 93043-5003

Approved for public release, distribution Is unlimited.



VI-2 a i -rr". 0

z ICI

a 0 -C

ata
Ll :11-S

I8 ,7 16 151 1 12 W :111
waa

E ~~E g E0M

w .39 E E

H.2 I J
.I MI 10 cc
4~~1 0I~ Ior' F,r 0 o d d -s .

ac

E 32 IS

.0



REPORT DOCUMENTATION PAGE meWI i" e Ia

ftiftmaft- Il gmw" tmoA 1 alt- m e -I- m t~o rlo 1 wt, w r'por~M ndf twm r so ko Ielm, ,mq 6dl eros *t Wim.

gdudeg wa nsds etMe dfs need ad mngIhs ad 1 th .i olee. Send sowu, regmadeg 1d 26-s 1 ormy eW am of Vm
erosione behnnsdn, s uga0gse'm b meuaid u h, WmbSemef Hedumu Swvsmw Onhte b hnsme nd - I. 1211 Je e sakW wIW",
Susl 2 04, MA , VA 2224M. end t C oM MaaMeegue aen Sudgm. Pmmut Rad. Pkmai g(071U , wN .gDC 20.

1. AENCYU II ONLY am(Liw 1. REPOL oATE S. EOTTYPE 0AM DATEU COVER.D

May 1990 Final: FY87 to FY89

4. ITLE Amo UUnlNE & FUNO N NURMER

AUTOMATED DYNAMIC RELAXATION SOLUTION

ALGORITHMS FOR COMPLIANT SYSTEMS PR - RV36129-1 15

t £umHom WU - DN668006

T. A. Shugar

7. PEEP1oN ORGAIUZAnO1IO SUM" AM AWMOWElhS6E e. PEPOEUt N ORGAIIZAMIOU
REPORT NURSER

Naval Civil Engineering Laboratory
Port Hueneme, CA 93043-5003 TN-1812

S. -1 ON -NON .AOENCY N MES ANW ADODFWESIII. 1. 1PONfORUU N o1NIINGOAGENC'Y REPORT NUMSER
Office of Naval Technology

800 North Quincy Street
Arlington, VA 22217-5000

I1. SUPPLJIENTA MOS

lm. OSTRINU11OWAVLAMIUTY STATIREr 1. IDMTN1M10N COOE

Approved for public release; distribution unlimited.

& ANBSTrACT wfathm 2o0 muds)

Tensioned or compliant structures, such as fabric shelter systems and ocean cable systems, are composed of
very flexible structural components that exhibit a high degree of geometrical nonlinearity and analytical
complexity. Structural analysis of these systems is a two-phase procedure: (1) the determination of the static
equilibrium configuration or prestressed state of the structure; and (2) the determination of structural response
relative to the equilibrium configuration due to static and dynamic in-service loads. This report addresses static
solution algorithms for reliable phase-one solution procedures. In contrast to the standarad Newton-Raphson
(NR) incremental/iterative algorithm, the automated dynamic relaxation (ADR) solution algorithm is a pure
iterative algorithm and it is also simple to implement. The ADR algorithm's performance is globally conver-
gent in test problems having multiple solutions, whereas NR algorithms are known to be only locally conver-
gent. The ADR algorithm can be successfully utilized to form the basis of structural analysis software for
specialized, highly nonlinear problems involving tensioned structures.

KU JMcr M I& NUGRER OF PAGES

Finite element, cables, dynamic relaxation tension structures, nonlinear 54
static solution algorithms It PaCoo

17. SECOT C$.SSlCA10N IIEUJUTY CLASIII 11ON .I& KCUiWUY CLASHNCAION ft UITAION OP AJSTRACT

OP EPOFr OF TMI8 PAE OF AlSTRACT

Unclassified Unclassified Unclassified UL

NIN ?14041-0-600 Siaied Fain M (eiv. 241)
P dby ANSI K M18



CONTE=T

Page

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Objective ............. .......................... 2
Background ............ ......................... 2

DERIVATION OF DYNAMIC RELAXATION INTEGRATION FORMULAS ... ...... 3

DERIVATION OF OPTIMAL ITERATION PARAMETERS ...... ............ 7

ESTIMATING THE MAXIMUM AND MINIMUM EIGENVALUES ... .......... ... 12

AUTOMATED DYNAMIC RELATION ALGORITHM .... ............... .... 13

KINEMATIC DAMPING ALGORITHM ....... ................... ... 14

RESULTS FROM NUMERICAL EXPERIMENTS ..... ................ ... 16

Fixed-Span Suspended Cable Problem .... ............. ... 16
Cable Snap-Through Problem ...... ................. ... 17
Varying-Span Suspended Cable Problem .... ............ ... 18
Comparison with SEADYN and SEASTAR .... ............. ... 19

SUMMARY AND CONCLUSIONS ........ ..................... ... 21

ACKNOWLEDGMENT .......... .......................... ... 22

REFERENCES .... .................... .............. .. 22

APPENDIX - Discussion of Existing Numerical Procedures
for Mooring and Ocean Cable Systems ... .......... ... A-1

A cpe-Fln For

Codes

.al

'/,-I
v I -7 '



The problem addressed in this research is the lack of a robust com-

putational procedure for determining the initial equilibrium configura-

tion and prestress state of tensioned structures. The solution of this

problem is widely regarded as a deterrent to efficient engineering design

and analysis of tensioned structures in the Navy (i.e., ocean cable and

membrane structures and land-based expeditionary and architectural/ten-

sioned fabric structures). Several authors have discussed and documented

this technical problem; they include Webster (1977, 1984), Liu (1977),

Peyrot and Goulois (1979), Shields and Zueck (1984), and Shugar (1987).

Compliant structures such as these generally may not be handled by linear

analysis methods, and successful nonlinear analysis methods usually require

modified solution algorithms.

A promising algorithm for application to structures that exhibit

strong nonlinear structural behavior was addressed in this investigation.

It is known as the automated dynamic relaxation (ADR) algorithm. The

ADR algorithm was compared to existing solution algorithms for tensioned

structures. It possesses some attractive features which provide for

monitoring and control of the stability of the solution process. Often

the solution process exhibits pathological behavior when a tensioned

structure approaches a slack configuration.

Existing solution algorithms based upon the Newton-Raphson method

have a subjective nature. They require that a guess be made for the

pretension in the structure to begin the solution procedure. The

robustness of these methods is adversely affected by this requirement

because convergence to the correct solution sometimes depends on the

accuracy of the guess. This runs contrary to the goal of a foolproof

algorithm.



A set of cable test problems was designed to numerically evaluate

the robustness of the algorithms studied. In these problems, the start-

ing conditions were designed purposely to be onerous to test the ability

of the algorithms to seek the correct static equilibrium position when

starting from rather arbitrary configurations. In some cases, multiple

static equilibrium solutions exist, and the goal is to find the global

solution.

Objective

The objective of this report is to present the automated dynamic

relaxation solution algorithms for nonlinear static problems in a manner

suitable for implementation into structural analysis software. This

report is largely based on a previous paper (Shugar, 1988) but also

includes additional background information, discussion of different ADR

algorithms, and additional numerical comparison studies with general

purpose ocean cable analysis computer programs.

Background

The technology of computational methods in ocean structural

engineering was reviewed by Shugar and Armand (1986) in which solution

methods for geometrically nonlinear ocean cable structures were dis-

cussed. In particular, the solution of static mooring system problems

has largely motivated this study of the dynamic relaxation solution

method. Hence, a lengthy discussion of several existing numerical

solution procedures and mooring computer programs is included in the

appendix. The computer programs discussed include:

MOORING (NAVFAC DM-26.5, 1985)

FLEETMOR (Palo and Karnoski, 1986)

STATMOOR (Cox, 1982)

SOUPLE (Peyrot, 1980)

SEADYN (Webster, 1976)

SEASTAR (Pawsey and Nour-Omid, 1988)
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Three classes of computer programs are defined as follows: (1)

programs limited to standard Navy ship mooring practice, (2) programs

suited to special purpose mooring problems, and (3) general purpose

finite element programs aimed at a wide class of structural analysis

problems.

The last two types of programs listed above are more closely

related than the first in that they are based on the direct stiffness

method from the theory of matrix analysis of structures, which provides

them with the potential for general purpose capability. The first type

is very specialized and limited to ship mooring problems in shallow

water where mooring line hydrodynamic drag force is insignificant. With

respect to the static mooring problem, however, all three types of pro-

grams have the common requirement of solving a nonlinear system of

static equilibrium equations.

The Newton iteration solution algorithm is most comonly employed

to solve the nonlinear system of equations in the computer programs

discussed. None of these programs employ the dynamic relaxation solu-

tion algorithm, although it has been used successfully, mostly in the

U.K., for general purpose static analysis of very flexible or compliant

structures including tensioned fabric structures and offshore riser and

cable structures. Mathematical and engineering descriptions of the

dynamic relaxation method are given by Crisfield (1986), although the

context is restricted to the solution of linear equations.

DERIVATION OF DYNAMIC RELAXATION INIEGRATION FORNULAS

It is presumed that a continuous cable structural system has been

spatially discretized using standard simple straight truss or curved

isoparametric finite elements. Then, the system of N static nonlinear

algebraic equations to be solved for the unknown, N-dimensional displace-

ment vector x is:

= Ee (1)



where F is the internal force vector which is a function of

structural system configuration x, and F e is the applied, static

external force vector acting on the structural system.

The dynamic relaxation method begins by converting the static

problem (Equation 1) into a structural dynamics problem using a psuedo

time variable, t, and a step load form for the static load vector,

Ee(t). Thus,

(t)+Cx(t)+F, Lx(t)] = Ee (t) (2)

Here H and C are, respectively, artificial mass and artificial damping

matrices which are defined arbitrarily as:

U = p1 (3a)

C = c I (3b)

where I is the NxN identity matrix, and the scalars p and c are artifi-

cial mass and artificial damping parameters, respectively. These param-

eters will subsequently be chosen to control convergence of the dynamic

relaxation iterative procedure. The artificial inertia and artificial

damping forces are stabilizing terms for the left-hand side of

Equation 2. When calculation of the internal force becomes numerically

ill-conditioned, these terms serve to temporarily regularize the

calculation. The psuedo equation of motion (Equation 2) is to be

integrated for x(t). After sufficient time has elapsed, the dynamic

solution x(t) is expected to converge to the static solution sought

which is denoted by x.

Temporal integration is accomplished by discretizing Equation 2

using the following central difference approximation formulas,

X(ti) n-/2 = 1 (,n _ xl) (4a)n-1/2 i
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and,

X(tn)n =1 n+1/2 - *n-1/2 (4b)

where h is the time step size. Also, averaging the discrete velocities

in Equation 4a time steps n+l/2 and n-l/2 yields:

i(tn) *n =1 n+l/2 - *n-1/2) (4c)

Substituting Equation 4 into Equation 2 yields a two-term recursion

formula for updating the velocity:

n+1/2 2 - ch/p o-1/2 2 h/P r n

= + ch/p) n (2 + ch/p) (5)

where rn is the residual force vector and is defined as the difference

between the approximated internal and external force vectors after n

time steps:

rn = Fi(xn ) - Fe(tn )  (5a)

The displacement is updated by replacing n with n+l and solving for xn+l

in Equation 4a:

xn+l = n n+/2 (6)

Substituting Equation 5 into Equation 6 and using Equation 4a to
eliminate x n-1/2 yields a three-term recursion formula (see Papadrakakis,

1982) for updating the displacement vector:
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n+l 4n_(2 - ch/p) Ln-l 2 h/p r n= 2 + ch/p) " 2 + ch/p" 2+ch/p} ' (n>0)

(7)

This is the primary formula for the dynamic relaxation method. It can

be seen that the central difference integration method results in an

explicit formulation for marching through time, since the vectors on the

right-hand side of Equation 7 are known. The vectorization apparent in

Equation 7 implies certain data structure advantages over standard Newton

methods which are matrix-based formulations. Papadrakakis (1986) refers

to this as a vector iteration method.

Equation 7 does not apply when n = 0, for the displacement at

is unknown. Therefore, an additional formula is needed to start the

iteration (see Shugar, 1987) as follows:

1 0 h 2 0= x " -p T_ (8)

This is a consistently derived starting formula for the dynamic relaxa-

tion method. Equations 7 and 8 generally agree with the dynamic relax-

ation formulas given by Papadrakakis (1981a) and Underwood (1983).*

It should be emphasized that the calculation of the residual rn in

Equation 7 is computationally straightforward using its definition

(Equation 5a). All that is required is to calculate and sum the unbal-

anced forces existing at each node point in the structural model at the

known, current configuration xn. The internal force calculation for

each element may be simply based on the conventional linear portion of

the finite element stiffness matrix, so long as the cable structure

behavior is restricted to small axial strains. Otherwise, nonlinear

*P.G. Underwood investigated dynamic relaxation methods for applications

to nonlinear buckling problems in structural analysis. In this regard,
the reader is also referred to Papadrakakis (1981b) and Tong (1986a,
1986b).
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stiffness terms may be derived to handle large axial strains, as shown

by Zienkiewicz (1977). Large displacements of cable elements are per-

mitted naturally by the displacement update formula (Equation 7). It is

not necessary to use a geometric stiffness matrix as in Newton-based

methods. The residual force vector is calculated on the updated, local,

or element level. No assembly is needed, nor is it necessary to compute

the tangent stiffness matrix of the system as required for the

Newton-based procedures.

DERIVATION OF OPTIMAL ITERATION PARAMETERS

Since the artificial inertia and artificial damping forces appear-

ing in the psuedo equation of motion (Equation 2) are arbitrary, one is

at liberty to choose any values for the parameters p and c. The objec-

tive is to develop formulas for these parameters so that they may be

adaptively controlled (during the solution) in such a way as to promote

optimum convergence for the dynamic relaxation iterative procedure.

One assumes that any difficulty in achieving convergence is due to

numerical ill-conditioning in the tangent stiffness matrix K(x). Such

ill-conditioning may arise for valid physical reasons, such as when

cables approach slack conditions. Since a well-behaved tangent stiffness

matrix is important to stability of the numerical process, whatever the

desired optimizing formulas are, it makes sense to anticipate that they

should somehow reflect the numerical condition of the tangent stiffness-

matrix during the solution process.

To examine systematically the convergence of the method, Lynch

(1968) transformed the Iterative process into a standard eigenvalue

problem for the error vector:

n = n (9)
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Following this approach, subtract the true solution x from Equation 7

and rewrite it using the error definition (9) to get the relationship

between successive error vectors:

9n+l [ BIII n n-l (10)

where: 2 - ch/p (1a)2 + ch/p + 1(la

2- 21,p_ (lOb)
2 + th/p

= - 1 (lOc)

In Equation 10 the matrix B is a preconditioned tangent stiffness matrix,

B = W-1 K( xn) w-T (11)

where the preconditioning matrix W (see Papadrakakis, 1986) is:

a. W = I. This is the standard dynamic relaxation scheme which

has been presented above in deriving Equation 7.

b. W = D 2 . Here, D is a diagonal matrix composed of the entries

on the main diagonal of the tangent stiffness matrix. This

method is also called diagonal scaling since the entries on

the main diagonal of the coefficient matrix, formed from the
-1 n) -Ttriproduct matrix, W K(n) W , are unity.

Letting the rate at which the error vector decays in the dynamic

relaxation process be denoted by X DR then:

n+l X n (12)

Clearly, the modulus of XDR should remain less than unity for the

dynamic relaxation process to converge with increasing n.
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Following Lynch (1968), one wishes to investigate what influences

the decay rate XDR* An equation for XDR is obtained by substituting

Equation 12 into Equation 10. One can then obtain:

DR DR)I B £n= (13)
DR

Now, the standard eigenvalue problem for the eigenpairs (XB,cn) of the

matrix B is written as:

(- XB +B) Sn = 2 (14)

If one identifies the scalar coefficient of I in Equation 13 with the

scalar coefficient of I in Equation 14, one can arrive at:

2D _ XD 0 + a
DR DR+ XB =0 (15)

DR

In Equation 15, one has related the decay rate XDR of the dynamic relax-

ation process to the eigenvalues XB of the structure's tangent stiffness

matrix. This is the type of relationship that was anticipated. Further-

more, the condition of the structural stiffness matrix can be tracked by

monitoring its eigenvalues by some method yet to be described.

Solving Equation 15 for XDR one obtains the quadratic equation:

X2 1 XB ) X + 0 (16)
DR B D

So, for each of the N eigenvalues of B there are two solutions for X
DR*

1 1 2

DR = 2( - xB) 2 ( 0 -XB) - 4 a (17)

9



There are three cases for these roots.

Case 1. The roots of the quadratic are complex when:

4 B (18)

The modulus of the decay rate IXDRI for this case is:

IxD2R- ch/p (19)lDRI =VN 2 + chip (@

The decay rate modulus is seen to be independent of the eigenvalue XB in

the case of complex roots, and, therefore, this case is of no particular

use.

Case 2. The roots are real and equal when:

4 a = (0 - X)B)2

The roots are:

X ~ 1 2( 2 X(1
XDR 2+ chip (2 - p XB (21)

For this case, one also finds that the square of the convergence

parameter ch/p has the following relationship with XB

2 2h( S h ) 2 = X B h , X h 2

Case 3. The roots are real and unequal when:

4 a < ( T X) 2  (23)
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The larger of the two roots is found to be:

2
4R CL h2 2. h h~ c2

2+h/[(2 -+ + _
p p p2

From the definition of XDR in Equation 12, one can see that it is

important to promote the smallest value possible for this parameter, and

to require that its modulus never exceed unity.

With that in mind, the behavior of the modulus IXDRI is studied by

graphing it versus ch/p using Equation 24, while holding the parameter

(h 2/p) XB constant (Figure 1). One can see that for any value of (h 2/p)

XB9 the smallest value of XDR occurs for Case 2, the equal-roots case.

Thus, for any value of (h /p) XB' the appropriate choice for ch/p comes

from Equation 22.

However, note that there are N values of X B and, thus, N values of

(h 2/p) X B* To help resolve this, the behavior of IXDRI versus (h2/p) XB

is similarly graphed in Figure 2, while holding constant the parameter

ch/p. Not shown is the region where XDR exceeds unity when (h2/p) XB >

4.0. This region is to be avoided if convergence is to be promoted.

Moreover, a strategy for selecting (h 2/p) XB is suggested from this fig-
ure.

Assume that for any B, the maximum eigenvalue XBmax and the minimum

eigenvalue XBmin have been calculated. Then a value of h /p that pro-

motes convergence can be calculated by centering (h2/p) XBmin and

(h 2/p) XBmax symmetrically about the abscissa value of 2. The

appropriate equation is therefore:

(h2) opt= 
(25)

XBmax + XBmin

11



Using this equation avoids the region (h 2/p) XBmax > 4.0, and assures

stability of the dynamic relaxation procedure. Furthermore, substituting

Equation 25 into Equation 22 leads to the optimal choice for ch/p for

promoting a faster convergence rate for the dynamic relaxation procedure:

(p)opt = X + VXBmax " XBmn (26)
Bmax +Bmin

KSTINATIM 79 NAXIPM AND MMINMUM EIXENVAUIES

To ensure stability one needs only to ensure that the inequality

IXDRI < 1 is maintained during iteration with the dynamic relaxation

method. Thus, if one is able to calculate an upper bound for the maxi-

mum elgenvalue, then one is assured that when its product with h 2/p is

taken to be less than four, the product of XBmax with h2 /p will also be

less than four and thereby satisfy IXDRI < 1. Papadrakakis (1981a) sug-

gests the following method.

The Gerschgorin theorem is available to calculate an upper bound of

the maximum eigenvalue of a square matrix. Applying it, one can write:

N
Ix Bmaxi < m~x I IB iji (27)

J=l

where the Bij are the entries in the scaled stiffness matrix B. This

states that the maximum over all rows of B of the sum of the entries

(their absolute values) in each row is an upper bound of X Bmx. An

implementation of this simple inequality must involve an algorithm that

recognizes that the matrix B is never formed explicitly in the dynamic

relaxation method. Thus, the coefficients B are calculated at the

element level to preserve the advantage of a vector iteration method.

12



Calculation of the minimum eigenvalue is less critical than the

calculation of the maximum eigenvalue for it cannot directly affect the

stability of the iteration process. Exact methods for its calculation

are not required, and bounds are not necessary for its estimation. The

minimum eigenvalue must only satisfy:

0 < XBmin < XBmax (28)

Its value, along with that for the maximum eigenvalue, does affect the

rate of convergence of the solution. Numerical experience has shown

that poor estimates can adversely affect the rate of convergence, though

they cannot directly cause a solution to blow up. Good estimates of the

minimum eigenvalue should therefore be sought.

It is noted that Equations 27 and 28 are only needed on occasions

when progress toward a solution is not satisfactory. Then they are em-

ployed along with the optimal formulas (Equations 25 and 26) to adjust

the solution parameters in Equation 7.

AUTONTED UNAMIC RELATION ALGORrI

A procedural description of the automated dynamic relaxation

solution method is given by the following algorithm:

Givenh=1andF h ch
-ext' 2p p max

0. Initialize n -0, x , Fnt 4-0

r0 4- F - F
int -ext

1 . r and - 12. - --

xn+l 4 - n-1 ch /p n
3. h/ x ~ 2 +ch/p) (2- - )

13



4. If convergence OK, then output xn+l and stop.

5. If n = nmax then output error message and stop.

6. n+-n+1

8. Calculate Fn-int

9. r n4F~ - F
. -nt -ext

10. If convergence rate OK, then go to step 3.

11. Estimate upper bound of maximum eigenvalue and estimate

minimum eigenvalue.

12. Update parameters ch/p and h2 /p.

13. Go to step 3.

KINKETIC DAhl'ING ALGO~

Cundall (1976), when examining the application of explicit

integration methods to problems in geomechanics, suggested that the

kinetic energy of the structure be constantly monitored, and that when

an energy peak is detected all the current velocities be set to zero.

For a system oscillating in one mode, the state of stress at the energy

peak would correspond to the static equilibrium position. However, for

practical problems with many degrees of freedom, the process must be

repeated through further peaks, eliminating the kinetic energy for all

modes, until the required degree of accuracy is obtained.

14



Using this method, the viscous damping coefficient of Equation 2 is

set to zero and the equation of motion becomes:

x F(x) = FCt) (29)

Integrating Equation 29, using central difference approximations in the

same way as Equation 2, we get:

n/2 = n(hp) (30)

and,

n+l = 2xn - n-1 (h2/p) n (31)

Following the same process for derivation of optimal iteration parameters

as before, the optimum value for (h 2/p) is:

(h2/p)opt = + (32)o Bmin Bmax

It is also recommended the the sum of XBmin and XBmax be replaced by the

Gerschgorin bound in Equation 27.

When the time increment h is kept constant throughout the iteration

process, an energy peak can be detected at each successive time step,

and in this case the structure is oscillating about the equilibrium state

with a constant frequency. To overcome this difficulty, the time step

is reduced to half of its value every time an energy peak is detected at

each time step until the iteration process returns to its normal conver-

gence. Once this has been achieved, the time increment is reset to its

original value. A flow chart of the method is shown in Figure 3.

Papadrakakis (1988) believes this version of dynamic relaxation may

have better behavior than the classical viscous damping version of dyna-

mic relaxation, presented here, for the class of problems studied. This

15



would seem to be corroborated by the success of Barnes and coworkers (in

the U.K.) who have used the kinetic damping version of dynamic relaxation

for problems involving compliant structures. For example, flexible risers

were studied by Soltanahmadi and Barnes (1987), prestressed nets and

membranes were studied by Barnes (1987), and various other membranes and

tensioned fabric structures have been solved by Wakefield (1987). Much

of the success of ADR in the design office environment is ascribed to

the simplicity of the kinetic damping algorithm. It is pointed out that

the inherent dynamic analogy of the method also facilitates understanding

and engenders control of the solution procedure by practicing engineers

when solving complex problems.

R SULTS FROM NWIICAL EKPIRIMINKN

In the following numerical experiments, results from the standard

Newton iteration algorithm and the ADR algorithm applied to nonlinear

static cable problems are compared. These results are abstracted from

Shugar (1987). Further results comparing the performance of the ADR

algorithm with existing cable analysis computer programs are also pre-

sented.

A set of simple, two-dimensional cable test problems was designed

primarily to test an algorithm's ability to seek the correct static

equilibrium solution from an initial cable configuration that is arbi-

trarily prescribed. The robustness of the algorithm is adcdressed by

deliberately specifying onerous initial nonequilibrium configurations.

Furthermore, multiple solutions are possible in some cases due to speci-

fication of a simple cable element that can support axial compression

force and has no bending stiffness.

Fixed-Span Suspended Cable Problem

The fixed-span suspended cable test problem consists of a cable

that is suspended between two supports and is acted on by lateral, unit

forces at each node. The unstrained length of the cable is 100 units,

16



and the span is 60 units. The cable length is uniformly divided into 10

elements. The rigidity of the cables, EA, is 1000. Table 1 compares

the convergence results of the full Newton and ADR algorithms for four

initial configuration cases. The results indicate that convergence to

the correct solution was achieved successfully by both algorithms for

all cases except the third, the kinked initial configuration case.

This case consists of an initial configuration where all the

elements lie on a straight line across the span, and the two innermost

elements overlap (though they are shown parallel with) adjacent ele-

ments. The expected equilibrium solution for this problem is presented

in Figure 4. Also shown is the unexpected, kinked equilibrium position

found by the full Newton algorithm for certain prescribed initial pre-

stress forces -- a requirement with this algorithm to avoid an initially

singular system. In this solution the two overlapped elements are sus-

taining compressive forces. It is expected that all algorithms would

find the expected solution if provision for tension-only element behav-

ior were made, since this constraint would eliminate the alternative

equilibrium states. However, the ADR algorithm requires no such provi-

sion, and furthermore, is independent of initial prestress force. There-

fore, it exhibits greater robustness in seeking the expected solution.

Cable Snap-Through Problem

The cable snap-through test problem consists of a six-element

suspended cable with an unstrained length of 60 units. The cable is

considered weightless, has an EA value of 1000, and is subjected to

concentrated horizontal and vertical forces, as shown in Table 2. The

horizontally loaded end support is free to move in the horizontal direc-

tion, beginning from either of two prescribed initial configuration cases,

until a static equilibrium configuration is reached. In the second case,

the six cable elements are initially coiled on top of one another such

that their nodes possess exactly the same initial coordinate values. As

the solution algorithm seeks equilibrium, the cable tends to uncoil and

snap through from left to right.
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The ADR algorithm converges to the expected equilibrium solution,

which is shown in Figure 5, from either initial configuration. However,

in the first case, the final calculated span was short by 9 percent.

(This is an anomalous result; in the other 13 test problems no similar

inaccuracy occurred with the ADR algorithm.) The accuracy of the full

Newton algorithm was good in this case. In the second case, however,

the full Newton algorithm did not always converge to the expected solu-

tion; again, this behavior depended on the value of the required initial

prestress force. The ADR algorithm is independent of this quantity, and

converged to the expected solution accurately.

Two unexpected, alternative equilibrium states found by the full

Newton algorithm are shown in Figures 5b and 5c. Once again these

states include elements sustaining compression forces.

Varying-Span Suspended Cable Problem

The varying-span suspended cable test problem consists of a hori-

zontally suspended cable with one of the two supports free to slide

horizontally. The cable is acted upon by uniform lateral load forces

and a concentrated, horizontal reaction force, both of which cause one

support to slide until the system reaches equilibrium. The unstrained

cable is 200 feet long and is uniformly subdivided into 10 elements.

This test problem was used by Webster (1979) in a similar study of

solution algorithms for ocean cable systems.

The three initial configuration cases studied are shown in Table 3

along with the problem parameters. In the first two cases, the cable is

initially aligned horizontally along the span. Case I is labeled taut

because its initial configuration is such that the cable will remain in

tension throughout the solution process. Case 2 is labeled slack because

the cable must pass from a compression state to a tension state during

the solution, thus traversing a zero-tension state. In Case 3, a com-

pletely sagged cable is represented wherein all elements initially lie

along a common vertical line; the cable should otherwise remain in ten-

sion throughout the solution process.
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The ADR algorithm converged to the expected equilibrium solution,

shown in Figure 6, in all three cases. However, in Case 2, the full

Newton algorithm did not always converge to this solution; its behavior

was like that already discussed for the previous problems. Whether the

expected solution was found or not depended on the value of the prescribed

prestress force. Webster (1979) showed that the full Newton algorithm

failed to converge for this test case. here, it was learned that it may

or may not converge to the expected solution. In general, however, these

results are in agreement with those of Webster's concerning the unreli-

ability of the full Newton algorithm for this class of problems.

The ADR algorithm is more robust than the full Newton algorithm in

seeking the expected equilibrium solution in the varying-span suspended

cable problem. Once again, this behavior is correlated with whether or

not a slack cable configuration arises in the solution process.

Also the results from Cases 1 and 3 show that the ability of either

algorithm to converge is not dependent on the degree of cable sag present

in the initial configuration. Thus, for numerical conditioning, it seems

to matter whether cable slackness (zero tension) is present, but not to

what degree cable sag is present.

Comparison with SEADYN and SEASTAR

In Table 4, the results of the preceding numerical experiments are

summarized for comparison with the results of further experiments on the

same set of test problems using two different nonlinear, displacement-

based finite element programs which are currently in practice for static

cable analysis applications, SEADYN and SEASTAR. Both of these programs

were evaluated over the set of 14 (problem 7 is actually four similar

problems) test problems, but did not perform quite as well as the ADR

solution algorithm.
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The results from SEASTAR, using its Newton-Raphson solution option*

(the default option), are very similar to the results presented earlier

for the test code written for this study which uses the same solution

algorithm (thus this similarity is to be expected). SEASTAR was able to

converge to the expected stable equilibrium solution for each problem.

However, it was also able to converge to unexpected cable equilibrium

positions as well. The difference is a consequence of having specified

different values of certain input parameters. The parameters with the

most noticeable influence were the initial pretension of the cable

elements, the load step or increment size, and whether the cable

elements were allowed to sustain compression.

When a load step size of 1.0 was prescribed (i.e., all the load is

applied at once), SEASTAR converged to the expected equilibrium solution.

However, in test problem 3, application of the external load in increments

instead of all at once, a common and reasonable strategy for nonlinear

problems, resulted in convergence to only metastable solutions. Figures

7a and 7b show this outcome when the total load was applied in two and

four increments, respectively. The unexpected solution obtained by

SEASTAR for test problem 6 was similar to the profile obtained before

(see Figures 4 and 5) and is omitted.

In test problem 10, application of the total load in one step resulted

in convergence to the expected equilibrium solution, as shown in Figure

8a. Unfortunately this behavior seems unpredictable, for application of

the load in four increments and 20 increments again resulted in convergence

to only metastable solutions, as shown in Figures 8b and 8c, respectively.

Prescribing a zero pretension load is not necessarily the answer in this

test problem as indicated by the result in Figure 8d.

*SEASTAR is a modified version of a computer program called ANSR III

which was written for general purpose, nonlinear finite element,
structural analysis applications. As such, it has additional advanced
options for solving nonlinear static problems (Simons and Powell, 1982).
These options must be used with caution and require experience for they
are based on intricate modifications of the Newton-Raphson algorithm
aimed at overcoming its inherent unreliability in structural buckling
problems.
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The evolution of the unexpected solution (Figure 8d) is presented

in Figure 8e, which shows four intermediate plots depicting initial

progress toward the converged unexpected solution. Load increments 1

through 5 applied 5 percent of the total load of each increment. From 5

percent to 100 percent of the load at increments of 5 percent, the unex-

pected solution was locked in. Thus, the unexpected solution locked in

early.

The results from SEADYN's viscous relaxation solution algorithm

(called VRR) are perfect except for test problem 6 where only the

unexpected, or metastable equilibrium solution was obtained.

SUKARY AND CONCLUSIOS

The automated dynamic relaxation (ADR) algorithm possesses some

attractive theoretical features for solving ill-conditioned numerical

models of static ocean cable structures. A major feature is the ability

to control the stability of the solution process automatically. Typi-

cally, when seeking a prestressed, equilibrium configuration from an

arbitrary starting configuration, the structure stiffness matrix will

exhibit pathological behavior when slack conditions in the cable struc-

ture arise during the solution process. The alternative Newton algorithm

has no provision for controlling the condition of the structure stiffness

matrix and may therefore be defeated by slack cable behavior.

The Newton algorithm requires that a cable pretension force be

arbitrarily prescribed to avoid a singularity condition in the cable

structure's stiffness matrix at the beginning of the solution process.

This study has shown that robustness is adversely affected by this re-

quirement. Convergence to the expected equilibrium solution sometimes

depended on the value of the arbitrarily prescribed pretension force

when multiple equilibrium solutions were present. Input data require-

ments that affect convergence in this way run contrary to the goal of a

foolproof solution algorithm.
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The ADR algorithm proved to be more robust than the full Newton

algorithm and the solution algorithms in SEASTAR and SEADYN for the

class of problems studied. It converged to the expected static equili-

brium configuration in every test problem. Conversely, solution algo-

rithms based on the full Newton method sometimes failed to converge to

the expected solution, and instead converged to unexpected and sometimes

meaningless alternative equilibrium states in those cases where the solu-

tion process encountered slack cable behavior.
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Table 1. Numerical Results of Fixed-Span Suspended Cable

Algorithms
Case Initial

No. Configuration Full
Newton

1 Rectangle

Converged Converged

2 Triangle

Converged Converged

41'

L_.
33 Kink

Can converge Converged
to unexpected
solution

(all elements are colinear)

4 Saw tooth

Converged Converged
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Table 2. Numerical Results - Cable Snap Through

Algorithms
Case Initial
No. Configuration Full

Newton

I Triangle

0 Converged Converged
with poor
accuracy

2

2 Coil

Can converge Converged
to unexpected

1 solution

2

(all elements are colinear)
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Table 3. Numerical Results - Varying-Span Suspended Cable

Algorithms
Case Initial

No. Configuration Full
Newton 

ADR

1 Taut

L

0 H Converged Converged

w

2 Slack

L L
Can converge Converged

0 0 to unexpected
0 0 0solution

w

3 Sag

(all elements Converged Converged

are colinear) L/2L
L = 200 ft
H = 5.77 lb
w = 0.1 lb/ft
EA = 1 x 102 lb

29



Table 4. Summary of Numerical Convergence Performance
for Various Algorithms

Test Initial Newton- SEADYN SEASTAR

Problem Configuration Raphson VRR N-R

1 Rectangle, suspended cable E E E E

2 Triangle, suspended cable E E E E

3 Kink, suspended cable E,U E U E,U

4 Sawtooth, suspended cable E E E E

5 Triangle, cable snap-through E E E E

6 Coil, cable snap-through E,U E** E E,U

7 Inverted sag, four mooring cables E E E E

8 Taut mooring cable E E E E

9 Zero sag, varying cable span E E E E

10 Slack, varying cable span E,U. E E E,U

11 Max sag, varying cable span E E E E

Key: U = Converged to an unexpected or metastable equilibrium solution.
E = Converged to the expected, stable equilibrium solution.

** = Converged but with 9% error in final span--anomalous result.
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Appendix

DISCUSSION OF EXISTING NUMERICAL PROCEDURES
FOR MOORING AND OCEAN CABLE SYSTEMS

The design of mooring systems is generally governed by static load
behavior. The mooring problem described here is a static force problem
in the horizontal plane for which the conditions of static equilibrium
are imposed by three equations of equilibrium. Single-point mooring
problems are statically determinant and multipoint mooring problems are
statically indeterminant. For the single-point mooring problem, there
are available the three equations of equilibrium in the plane to solve
for the three unknowns; the ship heading angle, the hawser force, and
the hawser heading angle. This problem can therefore be solved directly
without resorting to the force-displacement relation and compatibility
condition for the compliant mooring line. For multipoint mooring prob-
lems, each additional mooring leg, beyond the first, contributes two
more unknowns (either two rectangular components of the restoring force
or the restoring force and its angle) to the mooring problem. For an
m-point mooring problem, the order of redundancy is therefore 2(m-l).
Thus, 2(m-l) compatibility equations are required, in addition to the
three equations of equilibrium, to solve the statically indeterminant
problem.

The required compatibility equations are provided by the displace-
ment constraints imposed by the rigid ship deck and by the compliant
mooring lines. In numerical procedures, these constraints are formed
from two sets of input data for each mooring leg; the coordinates of the
anchor point and chock, where the mooring line is assumed to terminate,
and the force-deflection relationship of the mooring legs. Thus, the
relative distances among the chocks are known to the computer program
and remain fixed in the horizontal plane according to the first set of
data, and the displacement of the chocks relative to the anchor points
can be calculated using the second set of data. From this information,
the displacement of the ship and the displacements of the mooring lines
are calculated such that compatibility is satisfied. The mooring line
forces which act on the ship are calculated consistent with the ship
displacement.

The Naval Facilities Engineering Command (NAVFAC) promogates a
catenary mooring analysis computer program called MOORING to calculate
the position of a fleet moored ship and the forces in the mooring lines
due to wind and current loads. The analysis and design procedure, as
well as this program, are described in NAVFAC Design Manual DM-26.5 (see
the list of references). This program is a simple microcomputer program
for both fleet and fixed mooring design. It is written in Microsoft
GBASIC language and operates under the CPM operating system. It is
currently being rewritten in FORTRAN. There are several attractive
user-oriented features in the program, and it is apparently convenient
for the design of standard moorings.
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MOORING pertains to a specific anchor leg definition which is lim-
ited to a certain configuration and to two different types of materials.
An anchor leg configuration may include a hawser from the ship to a sur-
face buoy, a riser chain from the buoy to a ring or sinker, and up to
three ground leg chains extending from the ring to three anchor points.
Any combination or portion of this pattern may be prescribed for each
leg of the mooring system. Length, submerged weight, and breaking
strength of each line component is prescribed, and zero is entered where
any generic component in the anchor leg definition is to be omitted.
The nonlinear load-displacement curve for each prescribed anchor chain
configuration is precomputed according to catenary equations and saved
for subsequent use in solving the nonlinear static equilibrium equations
governing the offset position of the moored vessel. Both the mooring
leg configuration prescriptions and the catenary solutions are accom-
plished by running a subprogram CATZ.

The solution to the nonlinear static equilibrium equations provides
the position of the moored vessel in terms of three degrees of freedom;
they are the surge, sway, and yaw displacements relative to an assumed,
prescribed initial position for the vessel. The Newton-Raphson solution
method is employed. It has been noted that on occasion, convergence to
the solution does not occur, and the computation is automatically termi-
nated after a preset number of iterations. It is interesting that,
according to the documentation in DM-26.5, this happens when the mooring
system is exceptionally slack.

Calculations with MOORING were compared to calculations with
another ship mooring program, FLEETMOR (Palo and Karnoski, 1986), and
both were compared to measurements of moored ships made in the Carquinez
Straits just northeast of San Francisco (Karnoski and Palo, 1986). The
results showed that FLEETMOR was more accurate than MOORING. One reason
is that FLEETMOR allows the wind and current loads on the moored vessel
to vary according to changing position of the vessel during the solution
process, whereas MOORING assumes the loads to remain constant and inde-
pendent of vessel displacement.

Like MOORING, FLEETMOR is also intended to be an easy to use micro-
computer program for analysis of standard ship mooring systems. It com-
putes the static offset position of the moored ship due to wind, current,
and wave drift force loads. It models up to 24 mooring legs with each
leg comprised of up to three cable segments and a buoy or sinker. Line
stretch is included to simulate the elongation of synthetic lines. Either
surface or subsurface buoys may be simulated.

As in MOORING, the force-deflection relationship for each prescribed
mooring leg subsystem in FLEETMOR is precomputed using two-dimensional
catenary formulas and stored on disc file for later retrieval by the
program's solution routine. Mooring leg configurations anticipate and
are limited to standard Navy ship mooring practice. Arbitrary mooring
configurations for buoys, ships, platforms, risers, etc., are not pro-
vided for in these programs. No cable drag forces are allowed, and
therefore so-called mooring dominated systems cannot be analyzed with
these programs. MOORING and FLEETMOR are not intended for general pur-
pose mooring system analysis.
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FLEETMOR is coded in FORTRAN using the Professional FORTRAN com-
piler for the IBM-AT (with math coprocessor) version and the Supersoft
FORTRAN compiler for the Zenith version. It also has graphics routines
written in BASIC. Program modification must be anticipated if other
FORTRAN compilers are used when porting the program.

Like MOORING, FLEETMOR includes user-oriented editing features.
However, unlike MOORING, FLEETMOR also computes the applied wind, cur-
rent, and wave drift force loads from user-prescribed environmental
data, and for user-prescribed Navy vessels. Accomodating the fact that
these forces vary with the ship's heading relative to the direction of
the environment adds substantially to the degree of nonlinearity in the
static equations of equilibrium to be solved. As such, FLEETMOR solves
a more difficult problem than MOORING, but it yields a more accurate
prediction for the static offset position. That is, to the extent that
the ship's assumed initial heading is different from its final heading
in the static offset position, FLEETMOR's predictions of the offset
position and mooring line tensions will be more accurate than MOORING's
predictions. In this sense, a solution obtained by MOORING can be re-
garded as only an approximation to a solution obtained by FLEETMOR given
the same assumed initial headings. The differences should be small for
standard ship mooring applications which tend to be relatively stiff or
taut multipoint systems, but for more flexible systems or for single-
point mooring systems, the differences could be significant.

The solution method for the nonlinear static equations in FLEETMOR
is based on a simple bisection technique (method of false position). It
iteratively finds the heading angle of the ship that corresponds to a
zero value of the residual moment acting on the ship. This method has a
slower rate of convergence than the Newton-Raphson solution method used
in MOORING. However, it may also be more robust for difficult mooring
problems.

The solution routine in FLEETMOR is in fact derived from the
bisection solution routine in another microcomputer program called
STAThOOR (Cox, 1982). This program was written for single-point mooring
analysis of Navy ships. It has no provision for mooring leg data and
does not compute a static offset position for the moored ship. Thus,
STATMOOR is not intended to be a mooring analysis program per se.

In single-point moorings the equilibrium heading of the ship
depends only on the directions of the environmental loads and is not a
function of the mooring leg restoring force. STATMOOR calculates this
heading in the same way that FLEETMOR does for multipoint mooring cases,
the only difference being that no restoring force from the mooring leg
exists in the residual moment equation. The equilibrium heading found
by the bisection routine corresponds to equilibrium among the forces
acting on the ship due to environmental loading, which are also coded to
vary as a function of heading, as in FLEETMOR.

Once the equilibrium heading is calculated, STATMOOR calculates the
hawser force and heading necessary to hold the static offset position,
but not the coordinates of the position itself. FLEETMOR, has the
necessary mooring leg data to also calculate the static offset position.
In fact, FLEETMOR contains the STATMOOR code and defers to this section
of the program when a user flags the single-point mooring option. It
then computes the equilibrium heading and hawser force as well as the
static offset position.
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For deep water mooring applications where the drag force on the
mooring line becomes a consideration in the equilibrium of the system,
and for general-purpose mooring and ocean cable analysis, none of the
above Navy ship mooring computer programs are suitable. A general-
purpose mooring analysis capability is required for p actical solutions
in these types of problems. Two general-purpose computer programs are
in use for Navy applications, SEADYN (Webster, 1976, and Webster and
Palo, 1982) and SEASTAR (Pawsey and Nour-Omid, 1988). These computer
programs are displacement-based finite element programs, and it is this
technology that provides for general-purpose capability. Cables are
modeled as a series of one-dimensional finite elements which may be sub-
jected to hydrostatic or hydrodynamic loads, and they may be assembled
into an entire mooring leg or arbitrarily into many legs, and they may
be networked in arbitrary geometrical configurations. SEADYN and SEASTAR
would seem more suitable for mooring and ocean cable system analysis
than alternative commercially available general-purpose, nonlinear finite
element programs (MARC, ADINA, ABAQUS, ANSYS, MSCNASTRAN)* because they
have been specified to ocean engineering problems. Their nonlinear analy-
sis features are, however, too extensive to be appropriate for current
microcomputer implementation.

One computer program called SOUPLE (Peyrot, 1980) is implemented on
IBM-AT microcomputers and provides general-purpose mooring and cable
analysis capability. This program is based on the catenary formulas
given by O'Brien and Francis k1964) for use in modeling mooring legs as
in MOORING and FLEETMOR, but the catenary force-deflection relationship
is cast (Peyrot and Goulois, 1979) as a flexibility relationship as
described in the theory of matrix analysis of structures. This rela-
tionship is then simply inverted to obtain a stiffness relationship so
that it behaves like a super cable finite element. This is so that the
standard, direct stiffness algorithm may be used to assemble arbitrary
networks of these elements, as well as other structural elements, into a
structural model of a mooring or cable system. Depending on the problem,
either a single catenary element or a series of catenary elements are
used to model each mooring leg. Thus, SOUPLE is a displacement-based
structural analysis computer program which has been specified to ocean
engineering problems (Peyrot, 1980 and 1989).

Hydrodynamic loads are distributed to the cable elements in such a
way that the catenary equations (classically associated with gravity
loading only) upon which they are based remain valid. In a sense, the
loads are treated as an artificial gravity force component distributed
along a cable, but in the direction of the normal drag force component
instead of in the vertical direction typical of conventional catenary
mooring legs. The tangential drag force component is neglected.

*Some of these programs (ABAQUS, for example) do provide for ocean
cable analysis including hydrodynamic loads and spectral analysis
capability. They should be considered where they are available
when solving ocean structural analysis problems because they are
user-oriented, commercially-tested products.
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SOUPLE does not provide for variable hydrodynamic forces on a
moored ship as does FLEEThOR, and therefore it would not be as appro-
priate in ship mooring problems where the specification of such forces
is important. However, it can be recommended for use in other or more
advanced problems when the larger general-purpose programs SEADYN and
SEASTAR would otherwise be employed; because it is microcomputer-based,
it should be simpler to use, and because the mooring legs are modeled
using catenary formulas, convergence to the equilibrium solution should
be more reliable.

The solution algorithm coded in SOUPLE is the Newton-Raphson
method. Significantly, the algorithm has been modified to enhance
convergence performance. The modification consists of an addition of
artificial stiffness to the mooring system's structural stiffness
matrix. The amount of artificial stiffness added is variable in two
respects. First, the user is required to make decisions on the appro-
priate amount of artificial stiffness during the input data phase based
on his/her experience in the use of the program to solve more difficult
and highly nonlinear problems. For more well-behaved problems a default
value may be selected. Second, the amount of artificial stiffness dimin-
ishes automatically after each iteration of the solution procedure so
that only a minimum amount of artificial stiffness exists when conver-
gence is achieved.

SOUPLE does have its limitations in static problems, and it looses
some of its formulation elegance when handling cable inertia forces in
dynamic problems. In static problems, the catenary elements used to
model a mooring leg must each remain in their own plane, so if the ver-
tical current profile is not coplanar, the mooring leg must be modeled
as a series of smaller elements each deforming as a catenary in its own
plane. Even when the vertical profile is coplanar, but not uniform, the
user must anticipate the use of a series of elements to model the varia-
tion of drag forces with depth. This can be done easily enough by spec-
ifying the load variation on the mooring leg in its inivial configura-
tion. However, if the mooring leg's vertical position changes during
displacement from the initial position to the final position, SOUPLE
will not accomodate the changes because the load on each element will
remain constant irrespective of the changing depth of the element.

The situation in dynamic problems is similar because the inertia
forces on a mooring leg will vary spatially. Thus, when using SOUPLE to
solve dynamic problems, a significantly larger number of catenary elements
will be needed to model the variation in inertia forces with fidelity.
This mitigates the advantage that SOUPLE would normally have over SEADYN*
and SEASTAR due to its super catenary element formulation in contrast to
a traditional finite element formulation for modeling compliant struc-
tures.

*While SEADYN also has this catenary element, its architecture s not
designed around it. SOUPLE has a smaller architecture which permits
a microcomputer implementation.

A-5



DISTRIBUTION LIST

ADINA ENGRG, INC / Walczak, Watertown MA
AFESC / RDC (Katona), Tyndall AFB FL
APPLIED RSCH ASSOC, INC / Higgins, Albuquerque NM
ARMSTRONG AERO MED RSCH LAB / Ovenshire, Wright-Patterson AFB OH
ARMY CORPS OF ENGRS / HG, DAEN-ECE-D (Paavola), Washington DC
ARMY EWES / WESIM-C (N. Radhadrishnan), Vicksburg MS
CATHOLIC UNIV / of America CE Dept, Washington DC
DOT / Transp Sys Cntr (Pin Tong), Cambridge MA
DTRCEN / Code 1720, Bethesda MD
GEN MOTORS RSCH LABS / Khalil, Warren MI
GEORGIA INSTITUTE OF TECH / ME Dept (Fulton), Atlanta GA
HKS INC / (Naagtgal), Providence RI
JOHN HOPKINS UNIV / CE Dept (Jones), Baltimore MD
LOCKHEED / Rsch Lab (Jacoby), Palo Alto CA
LOCKHEED / Rsch Lab (Nour-Omid), Palo Alto CA
LOCKHEED / Rsch Lab (Underwood), Palo Alto CA
MARC ANALYSIS RSCH CORP / Hsu, Palo Alto CA
NATL TECH UNIV / Inst of Struc Anal (Papadrakakis), Athens Greece
NAVFACENGCOM / Code 04BE (Wu), Alexandria VA
NORTHWESTERN UNIV / CE Dept (Belytschko), Evanston IL
NRL / Code 4430 (Ramberg), Washington DC
NSF / Struct & Bldg Syst (Chang), Washington DC
NUSC DET / Code 44 (Carlsen), New London CT
OHIO STATE UNIV / CE Dept (Sierakowski), Columbus OH
ONR / Code 10P4 (Kostoff), Arlington VA
OREGON STATE UNIV / CE Dept (Hudspeth), Corvallis OR
OREGON STATE UNIV / CE Dept (Leonard), Corvallis OR
OREGON STATE UNIV / CE Dept (Yim), Corvallis OR
OREGON STATE UNIV / ME Dept (Smith), Corvallis OR
PORTLAND STATE UNIV / Engrg Dept (Migliori), Portland OR
SRI INTL / E Dept (Grant), Menlo Park CA
SRI INTL / ME Dept (Simons), Menlo Park CA
STANFORD UNIV / App Mech Div (Hughes), Stanford CA
STANFORD UNIV / CE Dept (Pensky), Stanford CA
STANFORD UNIV / Div of App Mech (Simo), Stanford CA
STRUCTURAL ENGINEERING CONSULTANT / (Payrot), Madison WI
THE CITY UNIVERSITY / CE Dept (Barnes), London England
TRW INC / Carpenter, San Bernardino CA
TRW INC / Crawford, Redondo Beach CA
UNIV OF CALIFORNIA / CE Dept (Herrmann), Davis CA
UNIV OF CALIFORNIA / CE Dept (Kutter), Davis CA
UNIV OF CALIFORNIA / CE Dept (Romstad), Davis CA
UNIV OF CALIFORNIA / CE Dept (Shen), Davis CA
UNIV OF CALIFORNIA / CE Dept (Taylor), Berkeley CA
UNIV OF CALIFORNIA / CE Dept (Wilson), Berkeley CA
UNIV OF CALIFORNIA / Geotech Mod (Idriss), Davis CA
UNIV OF CALIFORNIA / ME Dept (Bayo), Santa Barbara CA
UNIV OF CALIFORNIA / ME Dept (Bruch), Santa Barbara CA
UNIV OF CALIFORNIA / ME Dept (Leckie), Santa Barbara CA
UNIV OF CALIFORNIA / ME Dept (McMeeking), Santa Barbara CA
UNIV OF CALIFORNIA / ME Dept (Mitchell), Santa Barbara CA
UNIV OF CALIFORNIA / ME Dept (Tulin), Santa Barbara CA
UNIV OF COLORADO / CE Dept (Hon-Yim Ko), Boulder CO
UNIV OF COLORADO / ME Dept (Fellipa), Boulder CO



UNIV OF ILLINOIS / CE Lab (Abrams), Urbana IL
UNIV OF ILLINOIS / CE Lab (Pecknod), Urbana IL
UNIV OF N. CAROLINA / CE Dept (Gupta), Raleigh NC
UNIV OF N. CAROLINA / CE Dept (Tung), Raleigh NC
UNIV OF TEXAS / CE Dept (Stokoe), Austin TX
USAE WES / Norman, Vicksburg MS
USAE WES / Peters, Vicksburg MS
WEBSTER R / Brigham City UT
WEIDLINGER ASSOC / F.S. Wong, Palo Alto CA



I] INSTRUCTIONS

I The Naval Civil Engineering Laboratory has revised its primary distribution lists. The bottom of the

Ilabel on the reverse side has several numbers listed. These numbers correspond to numbers assigned to
the list of Subject Categories. Numbers on the label corresponding to those on the list indicate the
subject category and type of documents you are presently receiving. If you are satisfied, throw this card

I away (or file it for later reference).

If you want to change what you are presently receiving:

9 Delete - mark off number on bottom of label.

I * Add - circle number on list.

* Remove my name from all your lists - check box on list.

I e Change my address - line out incorrect line and write in correction (DO NOT REMOVE LABEL).

I l Number of copies should be entered after the title of the subject categories you select.

Fold on line below and drop in the mail.

Note: Numbers on label but not listed on questionnaire are for NCEL use only, please Ignore them.

Fold on line and staple.

Naval CiviU Engierng Laboratory
Port Huenieme. CA 93043-5003 NO POSTAGE
Official Business NECESSARY
Penalty for Private Use, $300 IF MAILED

IN THE
UNITED STATESBUSINESS REPLY CARDI

FIRST CLASS PERMIT NO. 12503 WASH D.C.
POSTAGE WILL BE PAID BY ADDRESSEE

Commanding Officer
Code L34
Naval Civil Engineering Laboratory
Port Hueneme, California 93043-5003



DISTRIBUTION QUESTIONNAIRE
The Naval Civil Engineering Laboratory is revising its Primary distribution lists.

SUBJECT CATEGORIES 28 ENERGY/POWER GENERATION
29 Thermal conservation (thermal engineering of buildings. HVAC

I SHORE FACILITIES systems, energy loss measurement, power generation)
2 Construction methods and materials (including corrosion 30 Controls and electrical conservation electrical systems,

control. coatings) energy monitoring and control systems)
3 Waterfront structures (malntenance/deteriorator. control) 31 Fuel flexibility (liquid fuels, coal utilization, energy
4 Utlities (including power conditioning) from sold waste)
5, Explosives safety 32 Alternate energy source (geothermal power, photovoitaic
& Aviation Engineering Test Facilities power systems, solar systems, wind systems, energy storage
7 Fire prevention and control systems)

Antenna technology 33 Site data and systems integration (energy resource data.
9, Structural analysis and design (including numericaland energy consumption data. integrating energy systems)

computer techniques) 34 ENVIRONMENTAL PROTECTION
10 Protective construction (including hardened shelters. 35 Hazardous waste rrdnimization

shock and vibration studies) 36 Restoration of installations (hazardous waste)
11" Sol/rock mechanics 37 Waste water management and sanitary engineering
14' Airfields and pavements 38 Oil pollution removal and recovery

39 Air pollution
1 ADVANCED BASE AND AMPHIBIOUS FACIUTIES
1* Base facilities (including shelters, power generation, water 44 OCEAN ENGINEERING

supplies) 45 Seafloor soils and foundations
17 Expedient roads/arfields/bridges 46 Seafloor construction systems and operations (including
18 Amphibious operations (including breakwaters, wave forces) diver and manipulator tools)
19, Over-the-Beach operations (Including containerization. 47 Undersea structures and materials

material transfer. lghterage and cranes) 48 Anchors and moorings
21 POL storage transfer and distribution 49 Undersea power systems. electromechanical cables.

and connectors
50 Pressure vessel facilities
51 Physical environment (Including site surveying)
52 Ocean-based concrete structures
54 Undersea cable dynamics

TYPES OF DOCUMENTS
85 Techdata Sheets 86 Technical Reports and Technical Notes 82 NCEL Guides & Abstracts None-
83 Table of Contents & Index to TDS 91 Physical Security remove my name



NCEL DOCUMENT EVALUATION

You are number one with us; how do we rate with you?

We at NCEL want to provide you our customer the best possible reports but we need your help. Therefore, I ask you
to please take the time from your busy schedule to fill out this questionnaire. Your response will assist us in providing
the best reports possible for our users. I wish to thank you in advance for your assistance. I assure you that the
information you provide will help us to be more responsive to your future needs.

R. N. STORER, Pt.D, P.E.
Technical Director

DOCUMENT NO. TITLE OF DOCUMENT:

Date: Respondent Organization:

Name: Activity Code:
Phone: Grade/Rank: _

Category (please check):

Sponsor - User _ Proponent _ Other (Specify)

Please answer on your behalf only; not on your organization's. Plei'se check (use an X) only the block that most closely
describes your attitude or feeling toward that statement:

SA Strongly Agree A Agree 0 Neutral D Disagree SD Strongly Disagree

SA A N D SD SA A N D SD

1. The technical quality of the report () () () () () 6. The conclusions and recommenda- () () ( )
is comparable to most of my other tions are clear and directly sup-
sources of technical information, ported by the contents of the

report.
2. The report will make significant () () () () ()

improvements in the cost and or 7. The graphics, tables, and photo- ( ) ( ) ( ) ( )
performance of my operation. graphs are well done.

3. The report acknowledges related () ( ) ( ) ()
work accomplished by others. Do you wish to continue getting

4. The report is well formatted. ( ) ( ) (r) ( ) ( )

Please add any comments (e.g., i'n what ways can we
5. The report is clearly written. ( ) ( ) ( ) ( ) ( ) improve the quality of our reports?) on the back of this

form.



Comments:

Pae Wd on kw and stspe

DEPARTMENT OF THE NAVY ---- ] n
Naval CI Engneeing Laboratory
Port Hueme. CA 93043-5003

Offio sueluas.
Penalty for Private Use $300

Code L03B
NAVAL CIVIL ENGINEERING LABORATORY
PORT HUENEME, CA 93043-5003


